Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces

نویسنده

  • Jiahong Wu
چکیده

The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the 3D incompressible Euler equations, and its dissipative version includes an extra term bearing the operator (−∆)α with α ∈ [0, 1]. Existing research appears to indicate the criticality of α = 1 2 in the sense that the issue of global existence for the 2D dissipative QG equation becomes extremely difficult when α ≤ 1 2 . It is shown here that for any α ≤ 1 2 the 2D dissipative QG equation with an initial datum in the Besov space Br 2,∞ or B r p,∞ (p > 2) possesses a unique global solution if the norm of the datum in these spaces is comparable to κ, the diffusion coefficient. Since the Sobolev space Hr is embedded in Br 2,∞, a special consequence is the global existence of small data solutions in Hr for any r > 2− 2α.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces

In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L, with p ∈ [1,∞]. Local results for arbitrary initial data are also given.

متن کامل

Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation

This paper concerns itself with Besov space solutions of the 2-D quasi-geostrophic (QG) equation with dissipation induced by a fractional Laplacian (−1)α . The goal is threefold: first, to extend a previous result on solutions in the inhomogeneous Besov space Br 2,q [J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal. 36 (2004–2005) 1014...

متن کامل

On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces

Article history: Received 5 October 2007 Revised 6 February 2010 Available online 26 February 2010

متن کامل

A Regularity Criterion for the Dissipative Quasi-geostrophic Equations

We establish a regularity criterion for weak solutions of the dissipative quasi-geostrophic equations in mixed time-space Besov spaces.

متن کامل

Global Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation

In this paper, we consider the modified quasi-geostrophic equation ∂tθ + (u · ∇) θ + κΛθ = 0 u = Λα−1R⊥θ. with κ > 0, α ∈ (0, 1] and θ0 ∈ L2(R2). We remark that the extra Λα−1 is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2005